Course	Credit		Contact	Total
Code	Hours	Advanced Power Electronics ¹	Hrs/Week	Contact Hrs
EPE-814	(Th-Pr)	(Elective)	(Th-Pr)	(Th-Pr)
	3.0-0	, , , , , , , , , , , , , , , , , , ,	3.0-0	45-0

Course Outline:

1. Power electronics converters are the backbone of any energy conversion system e.g. for renewable integration and for power quality etc. The course on Advanced Power Electronics is formulated for the graduate students to provide them with the analytical and control design skills in the power electronics.

Eligibility Criteria:

2. B.E (Electrical Engineering)

Recommended Books:

S.	Title	Author(s)	Assigned	Remarks
No.			Code	
1.	Fundamentals of Power	R.W. Erickson, D.	R.E	Text
	Electronics	Maksimovic		
2.	Power Electronics:	N. Mohan, T.M.		
	Converters,	Undeland, W.P.	R.T	Reference
	Applications and Design	Robbins		
3.	Power Electronics: A First	N. Mohan	N.M	Reference
	Course on Power			
	Electronics			

Course Objectives:

3. The major objective of this course is to enable the students to have designoriented analysis of topologies and control methods for various basic and advanced power electronic converters used for dc-dc, dc-ac and ac-dc power conversions in important applications

Learning outcome:

¹ The contents of this course are same as offered at ASU by Prof. R.Ayyanar

4. At the end of the course student will have sound understanding of 'dc-dc converters and power management' and 'PWM dc-ac/ac-dc converters at relatively higher power levels

Topics Covered:

No.	Topics	Text	Contact
		Book	Hours
1.	Principles of Steady State Converter Analysis	RE	3
2.	Steady State Equivalent Circuit Modeling	RE	3
3.	Dynamic Equivalent Modeling	RE	7
4.	Gate Drive	RE	1
5.	□-controller Interfacing	RE	1
6.	Discontinuous Conduction Mode (DCM)	RE	4
7.	Dynamic Equivalent Modeling in DCM	RE	4
8.	Switch Realization	RE	2
9.	Characteristics of Semiconductor Switches	RE	3
10.	Converter Topologies	RE	2
11.	Isolated Converters	RE	3
12.	Control System Design	RE	6
13.	PWM Techniques	RE	4
14.	Power & Harmonics in Non-Sinusoidal Systems	RE	2